Strain-assisted Reductive Ring Cleavage: Convenient Route to Bridged Eight-Membered Rings Present in Taxanes

Subrata Ghosh, ${ }^{*}$ Subrata Sarkar and Goutam Saha
Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Calcutta 700 032, India

Abstract

Reduction of 1,4-dimesyl entities embodied in several strained polycyclic systems with $\mathrm{Zn}-\mathrm{NaI}-\mathrm{HMPA}$ has been studied. While the dimesyl esters 9 and 15 gave exclusively $\mathrm{C}-\mathrm{C}$ bond-cleaved products 10 and 24, the dimesyl esters 18 and 20 gave both the ring-cleaved products 25 and 27 as well as the reduced products 26 and 28. On the other hand, the dimesyl ester 23 afforded exclusively the reduced product 29. The different reaction course observed has been ascribed to the release of strain associated with the trinorbornene systems. The ring-cleaved product 27 has been oxidised with RuO_{4} to afford the dione 30. Interestingly, oxidation of the diene 27 with OsO_{4} was found to proceed with unprecedented chemoselectivity by oxidation of the non-conjugated methylene unit to afford the enone 31

Carbon-carbon bond cleavage, like carbon-carbon bond formation, is a useful transformation in organic synthesis. The cleavage is particularly advantageous over $\mathrm{C}-\mathrm{C}$ bond formation in providing a variety of strategies ${ }^{1-6}$ for the synthesis of medium and large rings and in stereoselective introduction of carbon appendages. ${ }^{7}$ Ring expansion via oxidative fission ${ }^{1}$ of carbon-carbon double bonds and by anion- ${ }^{2}$ or radicalinduced ${ }^{3}$ cleavage of $\mathrm{C}-\mathrm{C} \sigma$ bonds in bridged and small ring systems occurs smoothly. However, ring expansion through cleavage of σ bonds at the fusion of two rings larger than four membered requires either the process to be exothermic ${ }^{4}$ or the ring-expanded product be highly stabilised through an intramolecular trap ${ }^{5}$ or a molecular geometry ${ }^{6}$ appropriate for continuous overlap of the participating orbitals. We herein describe a remarkable reductive process wherein the delicate balance between the two reaction courses, reduction and $\mathrm{C}-\mathrm{C}$ bond fragmentation, is determined by the strain energies associated with the parent systems and the resultant ringexpanded products.

Scheme 1
As part of our interest to the synthesis of the anticancer diterpene taxol, a simple general process for the cleavage of a ring-fusion bond in the system 1 where a 5 -membered ring is fused to a trinorbornene system was required. It was anticipated that generation of an anionic species 2 (Scheme 1) from a dihalogeno precursor 1 through metal-halogen exchange \dagger might lead to Grob-type fragmentation to afford the bridged eight-membered-ring system 3 present in taxanes. ${ }^{9}$ Successful realisation of this concept is presented ${ }^{10}$ here.

Results and Discussion

Tricyclo[5.2.1.0 ${ }^{2,6}$]decenes required for this investigation were obtained through Diels-Alder reaction of cyclopentadiene with appropriate dienophiles. For example, reaction ${ }^{11}$ of cyclo-pentene-1,2-dicarboxylic anhydride 4 with cyclopentadiene
afforded the anhydride 5 (Scheme 2). Reduction of the anhydride 5 with LiAlH_{4} (LAH) in refluxing tetrahydrofuran (THF) gave the diol 6 in nearly quantitative yield. An attempt to prepare the corresponding diiodide directly from the diol 6 by using Lange's procedure ${ }^{12}\left(\mathrm{I}_{2}-\mathrm{PPh}_{3}\right.$-imidazole) gave a complex reaction mixture. Considering that addition of I_{2} to the double bond of diol 6 with intramolecular participation of OH would make the reaction complicated, the saturated diol 7, obtained by hydrogenation of diol 6 , was chosen for this study. However, reaction of the diol 7 with $\mathbf{I}_{2}-\mathrm{PPh}_{3}$-imidazole did not produce the desired diiodo derivative. The only product isolated, in 79% yield, was assigned the structure $8, \mathrm{~m} . \mathrm{p} .188^{\circ} \mathrm{C}$, on the basis of NMR spectral data. The diol 6 was then converted into the dimesyl derivative 9 in quantitative yield. Attempted displacement of the mesyloxy groups in compound 9 by iodide with NaI in refluxing acetone led to complete recovery of starting material 9 . When heated \ddagger with NaI in hexamethylphosphoric triamide (HMPA), the dimesyl compound 9 gave a mixture of at least four components (TLC). Generation of the anionic species 3 directly from the dimesyl compound was next considered.
Fuzimoto ${ }^{14}$ has shown that mesyl esters can be reduced directly and very efficiently when heated with powdered Zn and NaI in 1,2-dimethoxyethane (DME) or HMPA. Subsequently it was shown ${ }^{15}$ that reduction of mesyl esters under these conditions involves radical or anionic intermediates. Intrigued by this observation, we heated the dimesyl species 9 with a suspension of powdered Zn and NaI in HMPA for 5 h at $90-$ $110^{\circ} \mathrm{C}$ (oil-bath temp.). As expected, only the ring-cleaved product 10 was obtained, in 82% yield as a liquid after column chromatography. The structure could be assigned easily from its ${ }^{1} \mathrm{H}$ NMR spectrum by the appearance of four olefinic protons at $\delta 4.61$ in addition to a two-olefinic-proton singlet at $\delta 5.78$. Additional support in favour of structure $\mathbf{1 0}$ was obtained by the appearance of two olefinic carbons at δ_{c} 154.1 (s) and 110.8 (t) attributable to exo methylene units at C-2 and $\mathrm{C}-6$, in addition to the $\mathrm{C}-8, \mathrm{C}-9$ olefinic carbons at $\delta 135.5$ (d) in the ${ }^{13} \mathrm{C}$ NMR spectrum of the product. Further evidence

[^0]

Scheme 2 Reagents and conditions: i, cyclopentadiene, THF, $\mathrm{AlCl}_{3}, 0^{\circ} \mathrm{C}$; ii, LiAlH_{4}, THF, reflux; iii, $\mathrm{H}_{2}, 10 \% \mathrm{Pd}-\mathrm{C}$, EtOH ; iv, $\mathrm{I}_{2}-\mathrm{PPh}_{3}$-imidazole, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; v, MeSO $\mathrm{Cl}_{2} \mathrm{NEt}_{3}$-DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$; vi, $\mathrm{Zn}-\mathrm{NaI}, \mathrm{HMPA}, 90-110^{\circ} \mathrm{C}$; vii, (a) $\mathrm{BH} 3, \mathrm{THF}, 0{ }^{\circ} \mathrm{C}, 3 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{NaOH}, 30 \% \mathrm{H}_{2} \mathrm{O}_{2} ;(b)$ Jones' reagent, acetone, $0^{\circ} \mathrm{C}$.
in support of structure 10 was obtained by transformation of the triene 10 into the known keto diester 11^{16} through hydroboration, Jones oxidation and treatment of diazomethane. The keto diester 10 has already been transformed ${ }^{16}$ into the bicyclo[5.3.1] undecane 12, the AB ring system of taxanes. Thus, the transformation of anhydride 4 into triester 12 represents an excellent route for entry into the taxane family.

To test the generality of this ring-cleavage process and to get insight about the structural requirement for the observed $\mathrm{C}-\mathrm{C}$ bond cleavage suppressing normal reduction, a number of dimesyl esters having a syn arrangement of the mesyloxymethyl groups around the bond to be cleaved were chosen. The dimesyl derivatives 15,18 and 23 were obtained from the known adducts $13,{ }^{17} 16{ }^{16}$ and $21,{ }^{18}$ respectively, through LAH reduction and mesylation of the corresponding diols 14,17 and 22. The dimesyl compound 20 was obtained from the diol 17 through hydrogenation to compound 19 and its subsequent mesylation. The mesyl compounds were heated with powdered Zn and NaI in HMPA in an oil-bath preset to $90-110^{\circ} \mathrm{C}$ under magnetic stirring. Sonication of the reaction mixture for 2 h before heating gave significant improvements in yield. The results are summarised in Table 1.

Exclusive C-C bond cleavage was observed for the dimesyl

$13 \mathrm{R}^{1} \mathrm{R}^{2}=\mathrm{CO}(\mathrm{O}) \mathrm{CO}, \mathrm{R}^{3}=\mathrm{CMe}_{2}$ $14 \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{OH}, \mathrm{R}^{3}=\mathrm{CMe}_{2}$ $15 \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{OMs}, \mathrm{R}^{3}=\mathrm{CMe}_{2}$

$19 \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{OH}$
$20 \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{OMs}$

$16 R^{1} R^{2}=\mathrm{CO}(\mathrm{O}) \mathrm{CO}$ $17 \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{OH}$ $18 \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{OMs}$
derivatives 9 and 15 (entries 1 and 2), while significant amounts of reduction products 26 and 28 were formed with the ringcleaved products 25 and 27 from reaction of the mesyl compounds 18 and 20 (entries 3 and 4). The dimesyl compound 23 (entry 5) on the other hand produced only the reduced product 29 . As all the dimesyl compounds used have the same molecular geometry suitable for a Grob-type fragmentation via the intermediate carbanion 2 , it was expected that all the mesyl esters would give only the ring-cleaved products if molecular geometry were the only factor required for cleavage. While the dimesyl compound 9 suffers from angle strain as well as nonbonded interaction involving the hydrogens at $\mathrm{C}-3, \mathrm{C}-4$ and $\mathrm{C}-5$ with the $\mathrm{C}-10$ hydrogen, the resultant eight-membered-ring system 10 experiences transannular interactions comparable to the non-bonded interaction in the dimesyl compound. Thus, the driving force for the fragmentation is possibly the release of angle strain associated with the trinorbornene unit. This is further supported when both the exo dimesyl compound 15 and its corresponding endo dimesyl isomer, where the angle strain has been increased at the expense of reduced non-bonded interaction, also gave only the ring-cleaved product 24. Incorporation of an aromatic ring in the eight-membered ring as in compounds 26 and 28 minimises the transannular interaction with concomitant increase in angle strain due to bond-angle deformation. Hence, during reaction of the dimesyl compounds 18 and 20 the release of strain energy is less compared with that in the reaction of compounds 9 and 15 and reduction of the intermediate carbanion competes with fragmentation giving rise to some reduced products. The importance of the angle strain for the fragmentation is further demonstrated when the dimesyl compound $\mathbf{2 3}$ incorporated in a bicyclo[2.2.2]octane system failed to undergo fragmentation, producing only the reduced product 29.

Scheme 3 Reagents and conditions: i, $\mathrm{RuCl}_{3} \cdot x \mathrm{H}_{2} \mathrm{O}-\mathrm{NaIO}_{4}, \mathrm{CCl}_{4}-$ MeCN -water, room temp.; ii, $\mathrm{OsO}_{4}-\mathrm{NaIO}_{4}, \mathrm{Et}_{2} \mathrm{O}$-water.

Table 1 Reaction of dimesyl compounds with $\mathrm{Zn}-\mathrm{NaI}$ in HMPA
Entry Dimesylate
${ }^{a}$ Yields refer to chromatographically isolated products. ${ }^{b}$ Percentage of products in the crude reaction mixture as determined from ${ }^{1} \mathrm{H}$ NMR spectroscopy.

To extend the scope of this ring-cleavage process toward further functionalisation necessary for the synthesis of taxane diterpenes, the ring-cleaved product 27 was subjected to oxidation (Scheme 3). Oxidation of compound 27 with catalytic amount of RuCl_{3} and NaIO_{4} under Sharpless conditions gave the diketone $\mathbf{3 0}$. The structure of the oxidation product of the diene 27 as the diketone was quite evident from the disappearance of the olefinic protons in the ${ }^{1} \mathrm{H}$ NMR spectrum and olefinic carbons in the ${ }^{13} \mathrm{C}$ NMR spectrum and from the presence of aromatic conjugated and non-conjugated carbonyl groups at $\delta 208.9$ and 212.9 , respectively. Interestingly, it was noted that by using a catalytic amount of $\mathrm{OsO}_{4}-\mathrm{NaIO}_{4}$ in aqueous diethyl ether, oxidation of the styrenic bond in compound 27 was found to be slower compared with oxidation of the non-conjugated methylene unit and the enone 31 could be isolated in 74% yield after a period of 16 h . That, during oxidation with OsO_{4}, the non-conjugated olefinic unit was oxidised was clearly evident by the disappearance of only the upfield olefinic protons at $\delta 4.57$ and 4.74 of the diene 27 and the presence of olefinic protons H^{A} at $\delta 4.93(\mathrm{~d}, J 3)$ and H^{B} at $\delta 5.26\left(\mathrm{dd}, J 3\right.$ and 1.5) in the ${ }^{1} \mathrm{H}$ NMR spectrum of the
product. Similarly, the ${ }^{13} \mathrm{C}$ NMR spectrum of the product showed the presence of aromatic conjugated methylene carbons at $\delta_{\mathrm{C}} 155.2(\mathrm{~s})$ and $115.0(\mathrm{t})$ and only the non-conjugated carbonyl group at $\delta_{\mathrm{C}} 211.9(\mathrm{~s})$. The enone 31 could be further oxidised to the diketone 30 by reaction with the $\mathrm{RuCl}_{3}-\mathrm{NaIO}_{4}$ system. The diketone $\mathbf{3 0}$ and the enone $\mathbf{3 1}$ represent the tricyclic taxane nucleus suitably functionalised for further elaboration.

This investigsation demonstrates that reduction of a $1,4-$ dimesyl system embodied in tricyclo[5.2.1.0 ${ }^{2,6}$]decenes with $\mathrm{Zn}-\mathrm{NaI}$ in HMPA leads to cleavage of the central $\mathrm{C}-\mathrm{C}$ bond leading to ring expansion to give bridged eight-membered rings. The driving force for the ring cleavage has been attributed to the release of angle strain associated with the trinorbornene unit.

Experimental

The compounds described are all racemates. M.p.s were measured in open capillary tubes and are uncorrected. IR spectra of solids (KBr) and liquids (neat) were recorded on a Perkin-Elmer model PE-298 instrument. ${ }^{1} \mathrm{H}$ NMR spectra were
recorded at 200 MHz and $\mathbf{6 0 ~ M H z}$ on Varian Associates XL200 and EM-360L spectrometers with SiMe_{4} as internal standard. J Values are given in Hz . ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 25 MHz on a JEOL FX-100 spectrometer. Sonication was carried out in a common ultrasonic cleaner (Julabo USR3, 100 W , operating at 35 kHz) partially filled with water at $15-20^{\circ} \mathrm{C}$. The organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Column chromatography was performed on silica gel ($60-120 \mathrm{mesh}$). Elemental analyses were performed by Mr. P. P. Bhattacharya and Mr. S. Sarkar of this laboratory.

General Procedure for Preparation of the Diols.-endo-2,6Bis(hydroxymethyl)tricyclo[5.2.1.0 ${ }^{2,6}$]dec-8-ene 6. The general procedure for synthesis of the diols is illustrated by the synthesis of the diol 6. To a magnetically stirred suspension of LAH (500 $\mathrm{mg}, 12 \mathrm{mmol}$) in THF $\left(7 \mathrm{~cm}^{3}\right)$ was added dropwise a solution of the anhydride $5(500 \mathrm{mg}, 2.5 \mathrm{mmol})$ in THF ($3 \mathrm{~cm}^{3}$) under N_{2}. The mixture was then refluxed for 3 h . The reaction mixture was cooled in ice and quenched by sequential addition of water (0.5 cm^{3}), aq. $\mathrm{NaOH}\left(0.5 \mathrm{~cm}^{3} ; 15 \%\right)$ and water ($1.5 \mathrm{~cm}^{3}$). The mixture was stirred for 15 min . The granular precipitate was filtered off, and washed with hot THF ($4 \times 15 \mathrm{~cm}^{3}$). The combined filtrate and washings were dried. The solvent was removed under reduced pressure to afford diol $6(470 \mathrm{mg}, 98 \%)$, m.p. $178{ }^{\circ} \mathrm{C}$ (Found: C, 74.05; H, 9.3. $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{2}$ requires C, $74.18 ; \mathrm{H}, 9.33 \%) ; v_{\text {max }} / \mathrm{cm}^{-1} 3320 ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 1.38-2.16 (8 H, m), 2.44 ($2 \mathrm{H}, \mathrm{t}, J$ 2), 3.38 ($2 \mathrm{H}, \mathrm{br}$), $3.50(4 \mathrm{H}$, $\mathrm{ABq}, J 20)$ and 6.18 ($2 \mathrm{H}, \mathrm{t}, J 2$).
exo-2,6-Bis(hydroxymethyl)-10-isopropylidenetricyclo-
[5.2.1.0 ${ }^{2,6}$]dec-8-ene 14. A solution of the exo-adduct 13 (400 $\mathrm{mg}, 1.64 \mathrm{mmol}$) in THF ($12 \mathrm{~cm}^{3}$) was reduced with LAH (310 $\mathrm{mg}, 8.2 \mathrm{mmol}$) to afford the diol $14(370 \mathrm{mg}, 97 \%)$, m.p. $182^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 76.6 ; \mathrm{H}, 9.4 . \mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{2}$ requires $\mathrm{C}, 76.88 ; \mathrm{H}, 9.46 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 3500 ; \delta_{\mathrm{H}}\left(60 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.23-1.96(12 \mathrm{H}, \mathrm{m}$ with a singlet at $\delta 1.56$), $2.90(2 \mathrm{H}, \mathrm{t}, J 1), 3.16(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.63$ ($4 \mathrm{H}, \mathrm{ABq}, J 14$) and $6.36(2 \mathrm{H}, \mathrm{t}, J 1)$.
endo-2,10-Bis(hydroxymethyl)tetracyclo [9.2.1.0 $\left.0^{2.10} .0^{3.8}\right]$ -tetradeca-3,5,7,12-tetraene 17. A solution of the anhydride 16 ($500 \mathrm{mg}, 1.98 \mathrm{mmol}$) in THF ($14 \mathrm{~cm}^{3}$) was reduced with LAH $(220 \mathrm{mg}, 5.79 \mathrm{mmol})$ to afford the diol $17(450 \mathrm{mg}, 95 \%)$, m.p. $142{ }^{\circ} \mathrm{C}$ (Found: C, $79.25 ; \mathrm{H}, 7.5 . \mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{2}$ requires C, 79.31 ; $\mathrm{H}, 7.49 \%$); $v_{\max } / \mathrm{cm}^{-1} 3400-3100 ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 1.16-1.46 (2 H, m), 2.61 (1 H, br s), 2.66(1 H, br s), 2.76(1 H, d, $J 17$), 3.46-3.74 (5 H, m), 3.70(1 H, d, J17), 4.17 (1 H, d, J12), $6.26(2 \mathrm{H}, \mathrm{br} \mathrm{s})$ and $7.12-7.36(4 \mathrm{H}, \mathrm{m})$.
endo-2,6-Bis(hydroxymethyl)-1-methoxytricyclo[5.2.2.0 ${ }^{2.6}$] undec-8-ene 22. A solution of the anydride $21(250 \mathrm{mg}, 1 \mathrm{mmol})$ in dry THF ($10 \mathrm{~cm}^{3}$) was refluxed with LAH ($150 \mathrm{mg}, 4 \mathrm{mmol}$) in dry THF ($7 \mathrm{~cm}^{3}$) for 3.5 h to afford the diol $22(240 \mathrm{mg}, 100 \%)$, m.p. $164{ }^{\circ} \mathrm{C}$ (Found: C,70.2; $\mathrm{H}, 9.5 . \mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{3}$ requires $\mathrm{C}, 70.55$; $\mathrm{H}, 9.31 \%$); $v_{\max } / \mathrm{cm}^{-1} 3360 ; \delta_{\mathrm{H}}\left(60 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.43-1.90$ $(10 \mathrm{H}, \mathrm{m}), 2.23(1 \mathrm{H}, \mathrm{brs}), 3.23-3.50(4 \mathrm{H}, \mathrm{m}), 3.33(3 \mathrm{H}, \mathrm{s}), 3.90-$ $4.36(2 \mathrm{H}, \mathrm{brs})$ and $6.20-6.33(2 \mathrm{H}, \mathrm{m})$.
endo-2,6-Bis(hydroxymethyl)tricyclo[5.2.1.0,6]decane 7. A solution of the unsaturated diol $6(500 \mathrm{mg}, 2.57 \mathrm{mmol})$ in ethanol ($20 \mathrm{~cm}^{3}$) was stirred magnetically in the presence of Pd-C ($50 \mathrm{mg}, 10 \%$) under H_{2} for 2 h . The catalyst was filtered off and the solvent was removed from the filtrate to afford the saturated diol 7 ($500 \mathrm{mg}, 100 \%$), m.p. $228{ }^{\circ} \mathrm{C}$ (Found: C, 73.6; $\mathrm{H}, 10.6 . \mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{2}$ requires $\mathrm{C}, 73.43 ; \mathrm{H}, 10.27 \%$); $\delta_{\mathrm{H}}(200$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) $1.04-2.02(14 \mathrm{H}, \mathrm{m}), 2.80(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.58(2 \mathrm{H}, \mathrm{d}$, $J 12$) and $3.86(2 \mathrm{H}, \mathrm{d}, J 12)$.

Reaction of the Saturated Diol 7 with $\mathrm{I}_{2}-\mathrm{PPh}_{3}$-Imidazole. Synthesis of the Tetrahydrofuran Derivative 8.-To a magnetically stirred solution of $\mathrm{Ph}_{3} \mathrm{P}(1.58 \mathrm{~g}, 6.02 \mathrm{mmol})$ and imidazole ($400 \mathrm{mg}, 6 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(8 \mathrm{~cm}^{3}\right)$ was added slowly iodine ($3 \mathrm{~g}, 11.8 \mathrm{mmol}$). The mixture was stirred until it became
homogeneous. A solution of the diol $7(420 \mathrm{mg}, 2.14 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \mathrm{~cm}^{3}\right)$ was slowly added to the reaction mixture. After the mixture had been stirred for 2 h , the solvent was removed. The residual black sticky mass was dissolved in water and was extracted with hexane ($3 \times 20 \mathrm{~cm}^{3}$). The combined extract was washed successively with aq. sodium thiosulfate (5%) and brine, and dried. The crude material obtained after removal of hexane was chromatographed to afford tetracycle 8 ($300 \mathrm{mg}, 79 \%$), m.p. $188^{\circ} \mathrm{C}$ (Found: C, 80.6; H, 10.2. $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}$ requires C, 80.85; H , $10.18 \%)$; $\delta_{\mathrm{H}}\left(60 \mathrm{MHz} ; \mathrm{CCl}_{4}\right)$ 0.86-1.83 ($12 \mathrm{H}, \mathrm{m}$), $1.96(2 \mathrm{H}, \mathrm{br}$ s), $2.90(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 10)$ and $3.90(2 \mathrm{H}, \mathrm{d}, J 10)$.

General Procedure for Preparation of the Dimesyl Esters.The general procedure is illustrated by the synthesis of the dimesyl compound 9 .
endo-2,6-Bis(mesyloxymethyl)tricyclo[5.2.1.02,6]dec-8-ene 9 . To a magnetically stirred and cooled (ice-salt-bath) solution of the diol 6 ($350 \mathrm{mg}, 1.8 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{\mathbf{2}}\left(7 \mathrm{~cm}^{3}\right)$ were added dropwise and sequentially triethylamine ($0.750 \mathrm{~cm}^{3}, 5.3 \mathrm{mmol}$), 4 -(dimethylamino)pyridine (DMAP) (5 mg) and methanesulfonyl chloride ($0.330 \mathrm{~cm}^{3}, 4.2 \mathrm{mmol}$). The mixture was stirred at this temp. for 30 min and at room temp. for 30 min . The reaction mixture was then poured into cold water $\left(5 \mathrm{~cm}^{3}\right)$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was washed successively with water, $10 \% \mathrm{aq} . \mathrm{HCl}$, and saturated aq. NaHCO_{3}, and was dried. Removal of solvent under reduced pressure afforded the dimesyl compound 9 ($600 \mathrm{mg}, 96 \%$), m.p. $122{ }^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}(200 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right)$ 1.42-2.08 ($8 \mathrm{H}, \mathrm{m}$), $2.74(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.06(6 \mathrm{H}, \mathrm{s}), 3.95$ $(4 \mathrm{H}, \mathrm{s})$ and $6.35(2 \mathrm{H}, \mathrm{br} \mathrm{s})$. Attempted purification to give an analytically pure sample led to rapid decomposition.
exo-10-Isopropylidene-2,6-bis(mesyloxymethyl)tricyclo[5.2.1.$0 .^{2.6}$] dec-8-ene 15. A solution of the diol $14(\mathbf{2 0 0} \mathbf{~ m g}, 0.85 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(4 \mathrm{~cm}^{3}\right)$ was treated with methanesulfonyl chloride ($0.168 \mathrm{~cm}^{3}, 2.16 \mathrm{mmol}$), triethylamine ($0.4 \mathrm{~cm}^{3}, 2.8 \mathrm{mmol}$) and DMAP (5 mg) to afford the dimesyl compound $15(310 \mathrm{mg}$, 100%), m.p. $176^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}\left(60 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 1.40-2.06 ($12 \mathrm{H}, \mathrm{m}$ with a singlet at $\delta 1.63), 3.06(6 \mathrm{H}, \mathrm{s}), 3.30(2 \mathrm{H}, \mathrm{t}, J 1), 4.13$ $(4 \mathrm{H}, \mathrm{ABq}, J 10)$ and $6.36(2 \mathrm{H}, \mathrm{t}, J 1)$.
endo-2,10-Bis(mesyloxymethyl)tetracyclo[9.2.1.0 $\left.0^{2,10} .0^{3,8}\right]$ -tetradeca-3,5,7,12-tetraene 18. A solution of the diol $17(480 \mathrm{mg}$, 2 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ was treated with methanesulfonyl chloride ($0.4 \mathrm{~cm}^{3}, 5 \mathrm{mmol}$), triethylamine ($0.98 \mathrm{~cm}^{3}, 7 \mathrm{mmol}$) and DMAP (10 mg) to afford the dimesyl compound 18 (710 $\mathrm{mg}, 90 \%$), m.p. $9{ }^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}} 1.43(2 \mathrm{H}, \mathrm{m}), 2.70-3.33(10 \mathrm{H}, \mathrm{m}$ with two singlets at $\delta 2.83$ and 3.06 for $\left.\mathrm{SO}_{2} \mathrm{Me}\right), 3.96-4.73(4 \mathrm{H}, \mathrm{m})$, 6.38 ($2 \mathrm{H}, \mathrm{t}, \mathrm{J} 1-2$) and 7.03-7.36 (4 H, m).
endo-2,10-Bis(mesyloxymethyl)tetracyclo[9.2.1.0 $\left.{ }^{2,10} 0^{3,8}\right]$ tetradecane 20. A solution of the unsaturated diol $17(500 \mathrm{mg}$, 2.06 mmol) in ethanol $\left(20 \mathrm{~cm}^{3}\right)$ was stirred magnetically in the presence of $\mathrm{Pd}-\mathrm{C}(80 \mathrm{mg}, 10 \%)$ under $\mathrm{H}_{\mathbf{2}}$ for 2 h . The catalyst was filtered off and the solvent was removed from the filtrate to afford the diol $19(500 \mathrm{mg}, 100 \%)$, m.p. $137^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}(200 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right)$ 1.0-1.96($6 \mathrm{H}, \mathrm{m}$), $2.11(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.20(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.68$ ($1 \mathrm{H}, \mathrm{d}, J 17$), $3.50-3.62$ ($2 \mathrm{H}, \mathrm{m}$), $3.70(1 \mathrm{H}, \mathrm{d}, J 17$), 4.0-4.32 ($4 \mathrm{H}, \mathrm{m}$) and 7.04-7.44 ($4 \mathrm{H}, \mathrm{m}$).
A solution of the saturated diol $19(200 \mathrm{mg}, 0.82 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{\mathbf{2}}\left(4 \mathrm{~cm}^{3}\right)$ was treated with methanesulfonyl chloride ($0.170 \mathrm{~cm}^{3}, 2.19 \mathrm{mmol}$), triethylamine $\left(0.400 \mathrm{~cm}^{3}, 2.8 \mathrm{mmol}\right)$ and DMAP (5 mg) to afford the dimesyl compound $20(325 \mathrm{mg}$, 100%), m.p. $118{ }^{\circ} \mathrm{C} ; \delta_{\mathrm{H}}\left(60 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.2-1.3(6 \mathrm{H}, \mathrm{m})$, $1.63(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.36(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.8(3 \mathrm{H}, \mathrm{s}), 3.03(3 \mathrm{H}, \mathrm{s}), 4.26-$ $4.76(4 \mathrm{H}, \mathrm{m})$ and $7.2(4 \mathrm{H}, \mathrm{s})$.
endo-1-Methoxy-2,6-bis(mesyloxymethyl)tricyclo[5.2.2.0 ${ }^{2,6}$]-undec-8-ene 23. A solution of the diol 22 ($200 \mathrm{mg}, 0.84 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(4.5 \mathrm{~cm}^{3}\right)$ was treated with methanesulfonyl chloride ($0.16 \mathrm{~cm}^{3}, 2 \mathrm{mmol}$), triethylamine ($0.37 \mathrm{~cm}^{3}, 2.7 \mathrm{mmol}$) and DMAP (5 mg) to afford the dimesyl compound 23 (300 mg , 92%) as a yellow liquid; $\delta_{\mathrm{H}}\left(60 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 1.26-2.16 (10 H ,
m), $2.52(1 \mathrm{H}, \mathrm{br}$ s), $2.93(6 \mathrm{H}, \mathrm{s}), 3.33(3 \mathrm{H}, \mathrm{s}), 3.80-4.33(4 \mathrm{H}$, $\mathrm{m}), 6.30(1 \mathrm{H}, \mathrm{br} \mathrm{s})$ and $6.35(1 \mathrm{H}, \mathrm{br} \mathrm{s})$.

Reaction of the Dimesyl Esters with $\mathrm{Zn}-\mathrm{NaI}$ in HMPA.General procedure. A suspension of freshly activated Zn powder (20 mmol), powdered anhydrous $\mathrm{NaI}(6 \mathrm{mmol})$ and a dimesyl compound (1 mmol) in HMPA (dried over molecular sieves $4 \AA)\left(8 \mathrm{~cm}^{3}\right)$ was sonicated for 2 h . The mixture was then heated in an oil-bath (preset at $90-110^{\circ} \mathrm{C}$) for $3-5 \mathrm{~h}$ under N_{2}. The reaction mixture was cooled, and diluted with pentane (25 cm^{3}). The undissolved material was filtered off. The filtrate was washed successively with aq. sodium thiosulfate (5%) and water ($4 \times 10 \mathrm{~cm}^{3}$), dried, and concentrated, and the residual liquid was purified by column chromatography to afford the pure product.

2,6-Dimethylenebicyclo[5.2.1]dec-8-ene 10 was obtained from the dimesyl ester 9 as a clear liquid (82%) (Found: C, 89.9 ; H, 10.3. $\mathrm{C}_{12} \mathrm{H}_{16}$ requires $\mathrm{C}, 89.93 ; \mathrm{H}, 10.06 \%$); $v_{\max } / \mathrm{cm}^{-1} 2960$, $2930,1635,1460,1440$ and $900 ; \delta_{\mathrm{H}}\left(60 \mathrm{MHz} ; \mathrm{CCl}_{4}\right) 1.30-2.73$ $(8 \mathrm{H}, \mathrm{m}), 3.44(2 \mathrm{H}, \mathrm{br} \mathrm{d}, J 9), 4.61(4 \mathrm{H}, \mathrm{m})$ and $5.78(2 \mathrm{H}$, $\mathrm{s}) ; \delta_{\mathrm{C}} 154.1(\mathrm{~s}), 135.5(\mathrm{~d}), 110.8(\mathrm{t}), 52.1(\mathrm{~d}), 38.8(\mathrm{t}), 37.1(\mathrm{t})$ and 29.4(t).

10-Isopropylidene-2,6-dimethylenebicyclo[5.2.1]dec-8-ene 24 was obtained from the dimesyl derivative 15 as a clear liquid (74%), b.p. $80-85^{\circ} \mathrm{C}(0.4 \mathrm{mmHg})$ (bath temp.) (Found: C, 90.15 ; $\mathrm{H}, 10.0 . \mathrm{C}_{15} \mathrm{H}_{20}$ requires $\mathrm{C}, 89.93 ; \mathrm{H}, 10.06 \%$); $v_{\max } / \mathrm{cm}^{-1} 2930$, $1630,1440,895$ and $770 ; \delta_{\mathrm{H}}\left(60 \mathrm{MHz} ; \mathrm{CCl}_{4}\right) 1.56(2 \mathrm{H}, \mathrm{m}), 1.70$ $(6 \mathrm{H}, \mathrm{s}), 2.26(4 \mathrm{H}, \mathrm{m}), 3.96(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.70(4 \mathrm{H}, \mathrm{br} \mathrm{s})$ and $5.76(2 \mathrm{H}, \mathrm{d}, J 1.5) ; \delta_{\mathrm{C}} 151.3(\mathrm{~s}), 134.9(\mathrm{~d}), 111.3(\mathrm{t}), 56.1(\mathrm{~d}), 38.3$ (t), 26.8 (t) and $20.6(\mathrm{q}) ; m / z(\%) 200\left(\mathrm{M}^{+}, 45\right), 185(100), 171$ (20), $157(45), 143(34), 128(26), 115(16), 106(10), 91(8)$ and 77 (4).

2,10-Dimethylenetricyclo[9.2.1.0 $0^{3,8}$]tetradeca-3,5,7,12-tetraene 25 and endo-2,10-dimethyltetracyclo $\left[9.2 .1 .0^{2,10} .0^{3.8}\right]$ tetra-deca-3,5,7,12-tetraene 26 were obtained from the dimesyl substrate 18 as $\sim 80: 20$ mixture in 73% yield. Chromatography through a long column of silica gel afforded pure compound 25 (10%), b.p. $95-100^{\circ} \mathrm{C}(10 \mathrm{mmHg}$) (bath temp.) (Found: C, $92.0 ; \mathrm{H}, 8.0 . \mathrm{C}_{16} \mathrm{H}_{16}$ requires $\mathrm{C}, 92.26 ; \mathrm{H}, 7.74 \%$); $v_{\text {max }} / \mathrm{cm}^{-1}$ $2980,2930,1640,1610,1480$ and $1445 ; \delta_{\mathrm{H}}\left(60 \mathrm{MHz} ; \mathrm{CCl}_{4}\right)$ $0.83-1.46(2 \mathrm{H}, \mathrm{m}), 2.43-3.03(2 \mathrm{H}, \mathrm{m}), 3.33(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 8), 3.76$ $(1 \mathrm{H}$, br d,$J 8), 4.70(1 \mathrm{H}, \mathrm{d}, J 2.5), 4.80(1 \mathrm{H}, \mathrm{t}, J<1), 5.05$ $(1 \mathrm{H}, \mathrm{t}, J 1-2), 5.16(1 \mathrm{H}, \mathrm{t}, J 1-2), 5.6(1 \mathrm{H}, \mathrm{m}), 6.03(1 \mathrm{H}, \mathrm{m})$ and 6.76-7.30 (4 H, m) and a fraction $\sim 90 \%$ enriched with compound 26 (Found: $\mathrm{C}, 91.6 ; \mathrm{H}, 8.5 . \mathrm{C}_{16} \mathrm{H}_{18}$ requires C , $91.37 ; \mathrm{H}, 8.63 \%$); $\delta_{\mathrm{H}}\left(60 \mathrm{MHz} ; \mathrm{CCl}_{4}\right)$ (from mixture) $1.0(3 \mathrm{H}, \mathrm{s})$, $1.10(3 \mathrm{H}, \mathrm{s}), 1.26(2 \mathrm{H}, \mathrm{t}, J<1), 2.50(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.60(1 \mathrm{H}, \mathrm{br} \mathrm{s})$, $2.90(2 \mathrm{H}, \mathrm{s}), 6.20(2 \mathrm{H}, \mathrm{br}$ s) and $7.06(4 \mathrm{H}, \mathrm{s})$.

2,10-Dimethylenetricyclo[9.2.1.0 ${ }^{3,8}$]tetradeca-3,5,7-triene 27 and 2,10-dimethyltetracyclo[9.2.1.0 $\left.0^{2,10} .0^{3,8}\right]$ tetradeca-3,5,7triene 28 were obtained from the dimesyl compound 20 as $\sim 70: 30$ mixture in 86% yield, which on careful column chromatography afforded compound 27 (64% yield containing $\sim 10 \%$ of compound 28); $v_{\text {max }} / \mathrm{cm}^{-1} 2950,1635,1605,1485$, 1440 and $895 ; \delta_{\mathrm{H}} 1.36-2.33(6 \mathrm{H}, \mathrm{m}), 2.66-3.50(4 \mathrm{H}, \mathrm{m}), 4.57$ ($1 \mathrm{H}, \mathrm{d}, J 3$), $4.74(1 \mathrm{H}, \mathrm{d}, J 3), 4.90(1 \mathrm{H}, \mathrm{d}, J 3), 5.23(1 \mathrm{H}, \mathrm{m})$ and $6.90-7.30(4 \mathrm{H}, \mathrm{m})$. The diene was characterised by its conversion into the dione 30 .
endo-1-Methoxy-2,6-dimethyltricyclo[5.2.2.0 ${ }^{2,6}$]undec-8-ene 29 was obtained from the dimesyl substrate 23 as the only product $(76 \%$) as a clear liquid (Found: $\mathrm{C}, 81.3 ; \mathrm{H}, 10.7$. $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}$ requires $\mathrm{C}, 81.50 ; \mathrm{H}, 10.75 \%$); $\delta_{\mathrm{H}} 1.06(3 \mathrm{H}, \mathrm{s}), 1.26$ $(3 \mathrm{H}, \mathrm{s}), 1.13-2.33(10 \mathrm{H}, \mathrm{m}), 3.43(3 \mathrm{H}, \mathrm{s}), 3.96(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 3)$, $5.46(1 \mathrm{H}, \mathrm{dd}, J 6$ and 3$)$ and $6.08(1 \mathrm{H}, \mathrm{d}, J 6)$.

Dimethyl 8-oxobicyclo[5.2.1]decane-2,6-dicarboxylate 11. A solution of the triene $10(120 \mathrm{mg}, 0.75 \mathrm{mmol})$ in THF ($20 \mathrm{~cm}^{3}$) was treated with a solution of diborane $\left(34 \% ; 0.8 \mathrm{~cm}^{3}, 3.47\right.$ mmol) in THF at $0^{\circ} \mathrm{C}$ for 3 h and then left overnight in a
refrigerator. The excess of diborane was decomposed by careful addition of a few drops of water. To the mixture was added aq. sodium hydroxide ($3 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 27 \mathrm{~cm}^{3}$) followed by dropwise addition of aq. hydrogen peroxide $\left(30 \% ; 27 \mathrm{~cm}^{3}\right)$. The reaction mixture was stirred at room temp. for 1 h and was then extracted with ethyl acetate $\left(4 \times 15 \mathrm{~cm}^{3}\right)$. The extract was washed with brine, dried, and concentrated under reduced pressure to afford the trihydroxy compound (110 mg) as a viscous mass; $v_{\text {max }} / \mathrm{cm}^{-1} 3400$ br.

Without further characterization the trihydroxy compound was oxidized in ice-cold acetone ($4 \mathrm{~cm}^{3}$) with Jones' reagent (0.7 mol dm ${ }^{-3} ; 3 \mathrm{~cm}^{3}$) for 1 h . The solvent was then removed and the residue was diluted with water $\left(5 \mathrm{~cm}^{3}\right)$ and extracted with ethyl acetate $\left(3 \times 10 \mathrm{~cm}^{3}\right)$. The extract was washed with brine and dried. Removal of solvent furnished a semisolid material which, on treatment with an ethereal solution of diazomethane followed by column chromatography, afforded the keto diester $11(120 \mathrm{mg}, 64 \%)$ as a liquid. This material was found to be identical by IR and ${ }^{1} \mathrm{H}$ NMR spectroscopy with the sample ${ }^{16}$ prepared by a different route.

2,10-Dioxotricyclo[9.2.1.0 3,8 $]$ tetradeca-3,5,7-triene 30. A mixture of the diene $27(100 \mathrm{mg}, 0.5 \mathrm{mmol})$ as obtained above, $\mathrm{NaIO}_{4}(950 \mathrm{mg}, 4.28 \mathrm{mmol}), \mathrm{RuCl}_{3} \cdot x \mathrm{H}_{2} \mathrm{O}(\sim 5 \mathrm{mg})$ in a mixture of $\mathrm{CCl}_{4}\left(6 \mathrm{~cm}^{3}\right), \mathrm{MeCN}\left(6 \mathrm{~cm}^{3}\right)$, and water $\left(12 \mathrm{~cm}^{3}\right)$ was stirred vigorously at room temp. for 16 h . The reaction mixture after dilution with water was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10$ cm^{3}). The extract was washed successively with aq. NaHCO_{3} (5%) and brine, and was dried. Removal of solvent, followed by column chromatography, afforded the reduced product 28 (20 $\mathrm{mg}, 20 \%$) [light petroleum ($60-80^{\circ} \mathrm{C}$) as eluent] (Found: C, $90.15 ; \mathrm{H}, 9.8 . \mathrm{C}_{16} \mathrm{H}_{20}$ requires $\mathrm{C}, 90.50 ; \mathrm{H}, 9.49 \%$; $v_{\text {max }} / \mathrm{cm}^{-1}$ $2945,2940,1590,1480$ and $1375 ; \delta_{\mathrm{H}} 1.10(3 \mathrm{H}, \mathrm{s}), 1.16(3 \mathrm{H}, \mathrm{s})$, $1.2-2.2(8 \mathrm{H}, \mathrm{m}), 2.86(2 \mathrm{H}, \mathrm{s})$ and $6.96(4 \mathrm{H}, \mathrm{s}) ; m / z(\%) 212\left(\mathrm{M}^{+}\right.$, $11), 182(42), 154(100), 144(43), 129(28)$ and $115(19)$; and the diketone $30(66 \mathrm{mg}, 65 \%$) as a liquid [light petroleum ($60-$ $80^{\circ} \mathrm{C}$)-diethyl ether ($4: 1$) as eluent] (Found: C, 78.3; H, 6.4. $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{2}$ requires $\mathrm{C}, 78.48 ; \mathrm{H}, 6.59 \%$); $v_{\max } / \mathrm{cm}^{-1} 1685$ and $1600 ; \delta_{\mathrm{H}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.44-2.56(6 \mathrm{H}, \mathrm{m}), 2.72-3.40$ $(2 \mathrm{H}, \mathrm{m}), 3.58(2 \mathrm{H}, \mathrm{ABq}, J 16)$ and $7.0-7.68(4 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}} 28.8$ (t), 29.3 (t), 34.1 (t), 45.3 (t), 52.9 (d), 53.5 (d), 126.1 (d). 127.7 (d), 129.5 (d), 129.6 (s), 130.3 (d), 140.9 (s), 208.9 (s, C-2) and 212.9 (s, C-10); $m / z(\%) 214\left(\mathrm{M}^{+}, 36\right), 186(7), 173(61), 145(100), 117$ (52) and 90 (87).

2-Methylene-10-oxotricyclo[9.2.1.0 $0^{3,8}$]tetradeca-3,5,7-triene 31. A mixture of the diene $27(110 \mathrm{mg}, 0.54 \mathrm{mmol}), \mathrm{NaIO}_{4}(260$ $\mathrm{mg}, 3.7 \mathrm{mmol}$) and OsO_{4} (cat.) in diethyl ether ($5 \mathrm{~cm}^{3}$)-water $\left(1.5 \mathrm{~cm}^{3}\right)$ was stirred vigorously for 16 h . After dilution with water the reaction mixture was extracted with diethyl ether $\left(3 \times 5 \mathrm{~cm}^{3}\right)$. The extract was washed with brine and dried. Removal of solvent, followed by column chromatography, afforded the starting diene (30 mg recovery) and the enone 31 ($60 \mathrm{mg}, 74 \%$ based on consumed diene) [hexane-diethyl ether (4:1) as eluent]; $v_{\text {max }} / \mathrm{cm}^{-1} 1690,1620$ and $1595 ; \delta_{\mathrm{H}}(60 \mathrm{MHz}$; $\left.\mathrm{CCl}_{4}\right) 1.16-4.16(10 \mathrm{H}, \mathrm{m}), 4.93\left(1 \mathrm{H}, \mathrm{d}, J 3, \mathrm{H}^{\mathrm{A}}\right), 5.26(1 \mathrm{H}, \mathrm{dd}, J$ $\left.3.1, \mathrm{H}^{\mathrm{B}}\right)$ and $6.86-7.73(4 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}} 30.0(\mathrm{t}), 31.2(\mathrm{t}), 37.9(\mathrm{t}), 46.2$ (t), 51.5 (d), 115.02 (t), 126.9 (d), 127.7 (d), 128.7 (d), 129.8 (d), 132.5 (s), 142.4 (s), 155.2 (s) and 211.9 (s, C-10); m / z (\%) 212 $\left(\mathrm{M}^{+}, 69\right), 183(18), 171(76), 145(100), 128(73), 115(75)$ and 91 (37).

Oxidation of this enone with RuO_{4} as above afforded a dione identical with the dione 30 by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

Acknowledgements

Financial support from the Department of Science and Technology, Government of India, is gratefully acknowledged. S. S. and G. S. thank the CSIR for research fellowships.

References

1 A. Eschenmoser, D. Felix and G. Ohloff, Helv. Chim. Acta, 1967, 50, 708; G. Mehta and N. Krishnamurthy, J. Chem. Soc., Chem. Commun., 1986, 1319.
2 T. K. Das, P. C. Dutta, G. Kartha and J. M. Bernassau, J. Chem. Soc., Perkin Trans. 1, 1977, 1287; H. J. Liu and S. P. Lee, Tetrahedron Lett., 1977, 3699.
3 A. L. J. Beckwith, D. M. O'Shea, S. Gerba and S. W. Westwood, J. Chem. Soc., Chem. Commun., 1987, 666; P. Dowd and S. C. Choi, J. Am. Chem. Soc., 1987, 109, 3493, 6548; J. E. Baldwin, R. M. Adlington and J. Robertson, J. Chem. Soc., Chem. Commun., 1988, 1404; P. Dowd and W. Zhang, J. Am. Chem. Soc., 1991, 113, 9875; C. W. Ellwood and G. Pattenden, Tetrahedron Lett., 1991, 32, 1591 ; F. E. Ziegler and Z. Zheng, J. Org. Chem., 1990, 55, 1416; G. L. Lange and C. Gottardo, Tetrahedron Lett., 1990, 31, 5985; M. T. Crimmins, C. M. Dudek and A. W. Cheung, Tetrahedron Lett., 1992, 33, 181.

4 B. M. Trost and J. E. Vincent, J. Am. Chem. Soc., 1980, 102, 5683.
5 Z. F. Xie and K. Sakai, J. Org. Chem., 1990, 55, 820.
6 C. A. Grob, Angew. Chem., Int. Ed. Engl., 1969, 8, 535; P. S. Wharton and G. A. Hiegel, J. Org. Chem., 1965, 30, 3254; J. A. Marshall, Synthesis, 1971, 929; L. N. Mander, J. M. Brown and T. M. Cresp, J. Org. Chem., 1977, 42, 3984; P. L. Fuchs and D. A. Clark, J. Am. Chem. Soc., 1979, 101, 3567; A. Eschenmoser, D. Sternbach, M. Shibuya, F. Jaisli and M. Bonetti, Angew. Chem., Int. Ed. Engl., 1979, 18, 634; P. A. Wender and C. J. Manly, J. Am. Chem. Soc., 1990, 112, 8579.

7 For an example see: M. T. Crimmins and S. W. Mascarella, Tetrahedron Lett., 1987, 28, 5063.
8 W. F. Bailey, R. P. Gagnier and J. J. Patricia, J. Org. Chem., 1984, 49, 2098.

9 For a review on the synthesis of eight-membered rings see: N. A. Petasis and M. A. Patane, Tetrahedron, 1992, 46, 5757; For a review on synthetic approaches to taxanes see: C. S. Swindell, Org. Prep. Proced. Int., 1991, 23, 465; For approaches to taxanes via a
fragmentation route see: B. M. Trost and H. Himestra, J. Am. Chem. Soc., 1982, 104, 886; H. Nagaoka, K. Ohsawa, T. Takafa and Y. Yamada, Tetrahedron Lett., 1984, 25, 5389; T. Kojima, T. Inouye and H. Kakisawa, Chem. Lett., 1985, 323; G. A. Kraus, P. J. Thomas and Y. Hon, J. Chem. Soc., Chem. Commun., 1987, 1849; R. A. Holton, R. R. Juo, H. B. Kim, D. A. Williams, S. Harusawa, R. E. Lowenthal and S. Yogai, J. Am. Chem. Soc., 1988, 110, 6558; C. S. Swindell and B. P. Patel, J. Org. Chem., 1990, 55, 3; S. Blechert and A. Kleine-Klausing, Angew. Chem., Int. Ed. Engl., 1991, 30, 412; J. D. Winkler and D. Subrahmanyan, Tetrahedron, 1992, 48, 7049; M. Benchikh le-Hocine, D. D. Khac, M. Fetizon, F. Guir, Y. Guo and T. Prange, Tetrahedron Lett., 1992, 33, 1443; P. A. Wender and T. P. Mucciaro, J. Am. Chem. Soc., 1992, 114, 5878; J. Oh, J. R. Choi and J. K. Cha, J. Org. Chem., 1992, 57, 6664.

10 A portion of this work appeared in a preliminary communication: S . Ghosh, A. Karpha, G. Saha and D. Patra, Tetrahedron Lett., 1992, 33, 2363.
11 S. Ghosh, S. Saha Roy and A. Bhattacharya, Synth. Commun., 1989, 19, 3191.
12 G. L. Lange and C. Gottardo, Synth. Commun., 1990, 20, 1473.
13 L. A. Paquette and M. J. Wyvratt, J. Am. Chem. Soc., 1974, 96, 4671. 14 V. Fuzimoto and T. Tatsuno, Tetrahedron Lett., 1976, 3325.
15 S. K. Pradhan, J. N. Kolhe and J. S. Mistry, Tetrahedron Lett., 1982, 23, 4481.
16 G. Saha, A. Karpha, S. Saha Roy and S. Ghosh, J. Chem. Soc., Perkin Trans. 1, 1992, 1587.
17 P. Camps, J. Castane, M. Feliz and M. Figueredo, Tetrahedron, 1984, 40, 5235.
18 G. Saha and S. Ghosh, Synth. Commun., 1991, 21, 2129.

Paper 3/02939E
Received 24th May 1993 Accepted 21st June 1993

[^0]: \dagger Bailey et al. have reported that 1,2-bis(iodomethyl)cyclobutane on treatment with $\mathrm{Bu}{ }^{t} \mathrm{Li}$ in pentane at $-23^{\circ} \mathrm{C}$ results in Grob-type cleavage of cyclobutane (ref. 8).
 \ddagger Paquette et al. have demonstrated that a 1,4-dimesyl system embodied in a highly strained cage system undergoes $\mathrm{C}-\mathrm{C}$ bond cleavage on simple heating with NaI in hexamethylphosphoric triamide (ref. 13).

